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Quasi-gasdynamic numerical algorithm for gas flow simulations
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SUMMARY

The quasi-gasdynamic equation system and the numerical algorithm for non-stationary viscous gasdynamic
flow calculations are presented. The quasi-gasdynamic equation system generalizes the Navier–Stokes
equations and differs from it by the additional dissipative terms. The numerical examples are presented.
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QUASI-GASDYNAMIC EQUATIONS

The paper is devoted to the contemporary mathematical model for gas flows and to the related
numerical methods for flow simulations. The mathematical model generalizes the Navier–Stokes
(NS) system of equations. This model is different from the NS system in additional dissipative
terms with a small parameter in �. The new model is named the quasi-gasdynamic (QGD) system
of equations. The first variant of the QGD system was presented in [1] and developed later in,
e.g. [2–5]. The QGD system has a form of the conservation laws and in common notations is
expressed as
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with the closing relations

jm =�(u−w) where w= �

�
[div(�u⊗u)+∇p] (4)

�=�NS+�u⊗[�(u·∇)u+∇p]+�I [(u·∇)p+�pdivu] (5)
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Here, �NS and qNS are the NS shear-stress tensor and heat flux vector, respectively, � is a
small parameter with dimension of time. System (1)–(6) is completed by the state equations
for a perfect gas and the expressions for the coefficients of viscosity, heat conductivity and �
coefficient.

The entropy production X for the QGD system is the entropy production for the NS system
completed by the additional terms in � that are squared left-hand sides of the classical stationary
Euler equations with positive coefficients:

X = �
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[div(�u)]2
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in which (�NS :�NS) is the double scalar product of two identical tensors. Equation (7) proves
the dissipative nature of the additional �-terms and the correctness of the QGD model with respect
to the second law of thermodynamics.

The QGD system differs from the NS equations by the second space derivative terms of an
order O(�). For stationary flows, the dissipative terms (terms in �) in the QGD equations have
the asymptotic order of O(�2) for �→0. In a boundary layer limit both QGD and NS equations
reduce to the Prandtl equation system.

The terms in � allow one to construct the family of the novel efficient numerical algorithms for
the simulation of non-stationary supersonic and subsonic gasdynamic flows. The QGD algorithms
inherit the mathematical properties of the QGD system.

Others gasdynamic models with non-classical continuity equation are presented in, e.g. [6–11].
Models [6–10] do not include the velocity derivatives in mass flax vector. The system [11] includes
the second time derivatives that do not appear in the QGD model.

FINITE-DIFFERENCE APPROXIMATION

Finite-difference approximations of the QGD system are constructed in a flux form directly using
the mass flux vector jm , the shear-stress tensor � and the heat flux vector q that correspond to
the conservation laws for the QGD equations (1)–(6). Invariant form of the QGD system allows
one to construct numerical methods for any orthogonal coordinate system for the structured and
unstructured space grids.
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As an example below we present the finite-volume algorithm for the two-dimensional Cartesian
coordinate system. In this case, the QGD system is expressed as

��
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Here ux and uy are the projections of the velocity u onto the x- and y-axes, respectively, E is
the total energy of a unit volume and H is the total specific enthalpy. The last two quantities are
calculated as

E=�
u2x +u2y

2
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�
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(12)

The components of the mass flux vector jm are

jmx =�(ux −wx ), jmy =�(uy−wy) (13)

where
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The components of � are determined by the following formula, convenient for a programme
realization:
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The components of the heat flux q are
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The heat conductivity coefficient � and the coefficient � are connected with the viscosity coefficient
� by

�= �R

(�−1)Pr
�, �= 1

pSc
� where �=�0

(
T

T0

)�

(17)

and Pr is the Prandtl number, Sc is the Schmidt number, R is the gas constant and � is the specific
heat ratio.

The equation system (8)–(11) must be completed by the initial and boundary conditions. In
contrast to the NS system, the continuity equation (1) in the QGD system is an equation of a second
order in space. Thus, the QGD system must be completed by an additional boundary condition.
This condition for the pressure p is obtained by imposing appropriate boundary condition for the
mass flux vector jm . For example, for unpenetrated wall with u=0 and jm =0, according to (4),
the additional boundary condition for the pressure has the form �p/�n=0, where n is the normal
vector to the wall.

To solve the problem numerically, the space and time grids are introduced in a computational
domain. The gasdynamic parameters—density �, pressure p and velocity u—are determined at the
nodes of the grid. The values of the gasdynamic parameters at the nodes with half-integer indices
and at the cell’s centers are determined as the arithmetic mean of their values at the adjacent
nodes. The finite-difference approximation of the QGD system (1)–(6) is constructed using the
control volume method. The similar approximations are used for rectangular structural grids and
unstructured three-cornered grids.

An initial boundary value problem is solved by applying an explicit finite-difference scheme
in time. The spatial derivatives are approximated by the central differences with a second-order
accuracy, and the time derivatives are approximated by the forward differences with a first-order
accuracy. The stability of the numerical algorithm is provided by the QGD terms in �.

NUMERICAL ALGORITHM FOR SUPERSONIC FLOWS

To ensure stability of a numerical solution for the supersonic flows, the term proportional to the
grid step h is added to �. Then, the coefficient �, viscosity and heat conductivity are calculated as

�= �0
pSc

(
T
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)�

+�
h

c
, �=�pSc, �= �R�pSc

Pr(�−1)
(18)

where c=√
�RT is a local sound velocity and � is a numerical factor 0���1.
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Figure 1. Density distribution along x (left—whole computational domain, right—fragments).

As an example of application we present here the strong discontinuity step evolution problem in
non-viscous gas without heat conductivity (1/Re=0). To solve Euler equations all terms propor-
tional to �=�h/c are regarded as the artificial dissipation.

The problem is solved in the space interval 0�x�200 for the time 0�t�8 with Courant stability
condition �t=	h/cmax. We take Sc=1, Pr= 2

3 and �= 5
3 . Initial conditions form a discontinuity

at x=100. The values to the left and to the right from the break are as follows:

�(x,0)=
{
8, x�100

1, x>100
, p(x,0)=

{
480, x�100

1, x>100
, u(x,0)=0

We used grid steps h=1,0.5,0.25,0.125,0.0625 and 0.03125 with �t=0.002 for the first three
variants, and �t=0.0002 for the last three ones. The convergence of the numerical results to
analytical solution with reducing h for t=4 is shown in Figure 1 for �=0.5 (two left figures).
The dependence of the solution from parameter � for h=0.03125 is shown on the right figure for
�=1,0.1,0.5,0.1 and 0.02. The last value corresponds to the ‘saw’ solution, where the beginning
of the numerical instability is clearly seen. Best solutions are attained for �∼0.2–0.5, 	∼0.1.

NUMERICAL ALGORITHM FOR SUBSONIC FLOWS

In contrast to the previous case (18), here the additional stabilizing term �h/c is introduced only
in � coefficient as

�= �0
pSc

(
T

T0

)�

+�
h

c
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Thus, the heat flux and the shear-stress tensor are not affected by the grid dissipation.
Within the framework of the QGD model the simple unreflecting boundary conditions may be

applied on the free subsonic boundaries. These conditions are similar to those used for viscous
incompressible flows. For inlet boundary (in) they have the form

�p
�n

=�in, u=uin, �=�in
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Figure 2. Mesh and flow picture for non-stationary flow near a cylinder, Re=90.

where �in∼1/Re is a small constant and n is a unit vector normal to the boundary. At the outlet
boundary (out) soft boundary conditions are imposed for the density and velocity, but the outlet
pressure is supposed to be a constant:

��

�n
=0,

�u
�n

=0, p= pout

As an example, the numerical simulation of a flow in a vicinity of a circular cylinder for the Mach
number Ma=0.1 and the Reynolds number Re=90 is presented. This problem is a well-known
test, e.g. [12] and citations therein. Our calculations were done for air flow, �=1.4, Pr=0.72, Sc=
0.746 and �=0.74 using unstructured grid consisting of 2191 points with �=0.1. For Re=20, the
stationary flow regime was obtained. For Re=90 and 100, the Karman street flow was formed. For
Re=90, the calculated Strouhal number is Sh=0.147. The Rayleigh formula for incompressible
flow gives Sh=0.212(1−21.2/Re)=0.162. With h decreasing the numerical frequency tends to
the empirical result.

In Figure 2, the Karman street in the wake is plotted using isolines for u2 in the dimensional
form (uin=35,31m/s, D=0.3m).

CONCLUSIONS

The novel mathematical model for the gas flow simulations, named the quasi-gasdynamic (QGD)
equation system, is presented. The QGD equations differ from the NS system by the additional
dissipative terms with a small multiplicative parameter. Based on the QGD model, the new robust
algorithms for non-stationary viscous flow simulations are constructed and verified. Universality,
efficiency and accuracy of these algorithms are provided by the validity of the conservation laws
and the entropy balance theorem for the QGD system.
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